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ABSTRACT

A zero-dimensional thermodynamic performance computer model for direct-injection stratified-

charge rotary combustion engines was modified and run for a single rotor supercharged engine.

Operating conditions for the computer runs were a single boost pressure and a matrix of speeds,

loads and engine materials. A representative engine map is presented showing the predicted range

of efficient operation. After discussion of the engine map, a number of engine features are analyzed

individually. These features are: heat transfer and the influence insulating materials have on engine

performance and exhaust energy; intake manifold pressure oscillations and interactions with the
combustion chamber; and performance losses and seal friction. Finally, code running times and

convergence data are presented.

INTRODUCTION

A brief list of the features that make a rotary combustion engine (RCE) a strong candidate as

a small aircraft engine would include its large power-to-weight ratio, its ability to be configured

into an engine package of small frontal area, its porting simplicity and its inherent balance (1)*.

In addition, a direct-injection stratified-charge (DISC) RCE offers the advantages of greater fuel
flexibility and improved fuel economy (2). Because of these advantages, research on DISC RCE

improvement is ongoing at NASA, in industry and at the university level. As reported in the

literature, a DISC RCE has run effectively on gasoline, jet fuel, diesel fuel and methanol (3).

Currently, brake specific fuel consumptions (bsfcs) of 243-255 g/kW-hr (0.40-0.42 lb/hp-hr) at

take-off and 231-249 g/kW-hr (0.38-0.41 lb/hp-hr) at cruise are indicated for an engine with a

cruise power of 225 kW (300 hp) (4). These values for bsfc place the DISC RCE well within or

under the fuel consumption of horizontally opposed, air cooled conventional piston aircraft engines

in a similar power class (5).

In early carbureted RCEs, the positive features mentioned above were offset partially by a number

of performance-degrading engine features. Gas seal leakage contributed to reductions in maxi-

mum torque, increases in bsfc and increases in hydrocarbon emissions (6). Flame quenching and
crevice flows resulted in lost fuel energy and also contributed to bsfc and hydrocarbon emissions

increases (7). Finally, slow combustion in the lagging part of the combustion chamber resulted in

performance loss and higher emissions (8).

Harder, multi-section apex seals are considered by many to have solved engine sealing problems

* Numbers in parentheses designate references at the end of the paper.



(3). Because the performance of Wankel engines has been improved, it is reasonable to assume

the sealing problem has been diminished, although direct measurements of leakage flows in firing

engines are difficult to perform. Combustion-related problems have been addressed through the

use of dual spark plugs and fuel injection. Suggestions for further improvement of rotary engine

performance include insulation of engine components (9), use of improved fuel injection patterns

and optimization of rotor pocket and port designs. Fuel injector improvements have been made

possible to a large extent through the use of multi-dimensional engine modelling of flow in the

combustion chamber (10).

PURPOSE

This report summarizes the results of a computer program written to analyze the performance

of a state-of-the-art DISC RCE. A zero-dimensional thermodynamic engine cycle computer model

has generated performance data for a single rotor DISC RCE. This satisfied two goals: to map

the performance of a hypothetical state-of-the-art RCE and to exercise a modified engine analysis

program. In the current study, the intent was not to predict the performance of a specific engine,

but to show the general features of DISC RCE performance and to demonstrate the capabilities of

an updated computer program.

BACKGROUND

The computer code used in this study (referred to as the MIT code) was initially developed at

MIT under the direction of Dr. John Iteywood. The first rotary engine code was derived from an

existing crank-piston engine thermodynamic model. It predicted the performance of a carbureted

RCE (11). The carbureted Wankel model employed a Wiebe function for estimation of burning

rate and included crevice/leakage effectsT Constant wall temperatures were used and manifold

thermodynamic properties were fixed. In its next stage of development at MIT, a DISC combustion

heat release model was added. The heat release rate model is described in reference (12). The most

complete reference describing the DISC MIT code is the masters thesis presented by Roberts (13).

Nguyen et al. applied Roberts' version of the MIT code to a DISC RCE designed by the Outboard

Marine Corporation and run at NASA Lewis Research Center (14). Results of a comparable

thermodynamic computer model were published by Dimplefeld (15), along with comparisons with

engine data. The final development of the MIT code at MIT was performed by Stanten (16), who

added the provision for user-defined trochoid housing surface temperatures.

At NASA Lewis Research Center, in addition to funding experimental and industry development

of the DISC RCE, computer programs are being written and modified to gain insights into engine

performance and in-cylinder processes. Multi-dimensional computer programs under development

include those of Raju (17) an,] Shih et al. (18). In thermodynamic modelling, the MIT DISC

engine code has been modified; the modified version was used to produce the results in this paper.

A number of major changes have been made to the MIT code at NASA. First, steady state heat

transfer models for the rotor face, side housings, trochoid housing and exhaust pipe were added.

Also, intake manifold pressure, temperature and mass are now allowed to vary during the intake

process. Accounting of crevice mass accumulation was changed, as well as the convergence process

and the selection of cycle initial conditions. Finally, kinematic models for seal and bearing friction

were added, along with an ad hoc model for estimating losses associated with ancillary components.

In the following section of this paper, the basic governing equations of the MIT code will be reviewed

briefly and the additions will be described in greater detail.

Due to the MIT code's much shorter computational time, it has many capabilities and can address

engine development questions that are not addressed by the multi-dimensional codes mentioned

above. On the negative side, the code relies on empirical constants. If experimental data are not



first obtained for an engine, the MIT code can only demonstrate trends. Nonetheless, such a model

as the MIT code is useful in preliminary investigations of engine configurations and may be used

as part of a larger turbocharged/turbocompounded engine simulation.

MODEL FORMULATION AND CALIBRATION

A brief overview of the original DISC MIT code governing equations is presented in this section,

along with a more detailed treatment of the additions made to the code at NASA. For more detailed

information, the reader is directed to references (11), (13) and (16).

The MIT code follows the progress of one of the three RCE combustion chambers through a number

of engine cycles until steady operation is achieved. The gas in the combustion chamber and in the

manifolds is considered well mixed.

Figure 1 is a schematic of a RCE. The indicated chamber is in the minimum volume, top dead

center (TDC) position. In the MIT code, this position is designated as crank angle, 8, equal to

0 ° . The engine cycle begins as the intake port opens (when the lead apex seal begins to uncover

the intake port) at crank angle O_po and lasts for one rotor revolution. Since the rotor rotates

at 1/3 the rate of the crankshaft, one cycle lasts 3 x 360 ° -- 1080 °. O_pc, 0o_, O.po and Oepc are
crank angles for intake port closing, spark firing, exhaust port opening and exhaust port closing,

respectively. For the above definition of crank angle, 0_po, 0_pc and 0e_ are negative while 0epo

and 0c_c are positive. The MIT code is considered converged when the chamber pressure, Pc, the
chamber temperature, T¢, the chamber mass, me, the intake manifold pressure, P_,_ and the rotor

and housing temperatures vary less than a user-input tolerance between engine cycles.

As the code marches in crank angle, the derivatives of chamber temperature, pressure, mass and

composition are calculated and integrated. In addition, leakage flow rates, heat transfer rates

and rate of change of manifold properties are calculated on a crank angle by crank angle basis.

Chamber pressure, temperature, mass and composition are governed by the conservation of mass,

species and energy and the ideal gas relation. Thermodynamic properties are calculated using

approximate, empirical relations for hydrocarbon-air combustion products (19). Flow rates into
and out of the chamber, including intake, exhaust and leakage through gas seals, are quasi-steady,

1-D compressible; the mass flow rate is uniquely determined by upstream temperature, pressure
and composition, downstream pressure and user-input discharge coefficient. Port areas and leakage

area per chamber are also input. Backflow of chamber contents into the intake manifold is allowed.

Combustion proceeds according to an input empirical heat release rate. As shown in Figure 2, heat

release takes place in two phases. First, there is a linear rise to the maximum heat release rate:

(0 ,,,
where _ is the rate of fuel energy heat release per crank angle degree, (_),,a= is the maximum
heat release rate encountered and Oq,,.,a._ is the crank angle for the maximum heat release rate.

After the linear rise, the heat release rate falls exponentially according to

exp{'00.o°-'}
--_- : ¢n.az T

Inputs to the MIT code combustion model are (de),,_oz and 0,,,_. r is calculated assuming

complete combustion of fuel. Ideally, a set of combustion model inputs would be provided to the

code for various engine speeds and loads, depending on the variation of the combustion process



with speed and load. In the absence of engine pressure data to derive these combustion model

inputs, the same values were used for all operating conditions in this study. The values used for

these constants were chosen based on the authors' experience and the work of Nguyen (14). Using

the same combustion model inputs for all engine operating conditions is expected to result in error,

especially at high engine speeds when the time for all the fuel to burn becomes a greater fraction
of the time to complete one engine cycle for an actual engine.

Heat transfer coefficient between the chamber gas and the trochoid housing inner surface, the rotor
face and the side housing surfaces is calculated according to

Nu = _Re" Pr "7 (3)

where Nu is Nusselt number based on the chamber depth, Re is Reynolds number based on chamber

depth, Pr is Prandtl number and fl, g and h are empirical constants. This relation was proposed by

Woschni (20). During intake, compression and exhaust, the velocity used in the Reynolds number
is the rotor tip speed. During combustion, another term is added to velocity to include combustion

turbulence effects. For the results presented, the constants in equation 3 were/_ -- 0.038, g = 0.8

and h = 1. An attempt was made to implement an alternative relation proposed by Lee and Schock

(21), but this relation did not produce acceptable qualitative results; the peak heat transfer rates
did not occur at or near TDC.

Steady state wall temperature calculations are now made in the MIT code. The trochoid housing is

divided into 30 segments. The midpoints of these segments are shown in Figure 3. A steady st.ate

wall temperature calculation is made at each segment's midpoint. The trochoid housing can be

made of up to three materials, each with its own thickness and thermal conductivity. The hot gas

side heat transfer coefficient at the segment midpoints is taken as the average of the heat transfer
coefficient (equation 3) over the 360 ° surrounding the segment. The coolant side heat transfer

coefficient is calculated internally with user-input coolant properties and flow rate and allowing

for nucleate boiling. As can be seen from the thermal resistance schematic in Figure 4, the wall
temperature, T_a_ is

T,,,=l_ = hhg T¢ + UT¢oo_
U + hh---_ (4)

where hhg is average hot gas heat transfer coefficient, _ is average chamber temperature and U

is overall heat transfer coefficient from the inner housing surface to the coolant. For the housing
cross section shown in Figure 4,

1

U = L,/k, + L_/k_ + Ls/ks + 1/hcoo, (5)

where La, L2 and Ls are thicknesses of materials 1, 2, and 3, kl, k2 and ks are thermal conduc-

tivities of materials 1, 2 and 3 and hcoot is the coolant side convective and boiling heat transfer
coefficient. Equation 5 assumes housing curvature effects are small.

A steady state heat transfer model applied at each segment midpoint is the most practical for

use with a thermodynamic model. A similar approach was used by Assanis and Badillo (22) and
produced adequate results for metal engines, but less satisfactory results for insulated engines. It

is likely that errors in using a steady state heat transfer model will be less for the trochoid housing,
since each housing position "sees" only a limited part of the cycle and is therefore subject to less

severe swings in temperature. Another short-coming of the steady-state heat transfer model is its

insensitivity to heat-transfer-driven changes in the combustion process. When wall temperature,



porosityand radiationcharacteristicsarechanged, the combustion processmay alsochange. Unless

the MIT code combustion model isrecalibratedforeach setofhousing and rotormaterials,changes

in the combustion processwillnot be reflectedin predictedperformance.

Side.platetemperatures arecalculatedsimilarlytotrochoidhousing temperatures,with the excep-

tionthat the coolantsideheat transfercoefficientisinput and does not includenucleateboiling.

The rotor face temperature also is calculated assuming one dimensional steady state heat transfer.

The hot gas side heat transfer coefficient and gas temperature are set equal to the cycle averages
and the heat transfer coefficient is a user-input value. The value used for rotor coolant heat transfer

coefficient was estimated reflecting a "cocktail shaker" type oil flow in the rotor cavity.

Intake manifold thermodynamic properties including intake manifold pressure, P_, temperature,

Ti,_, and mass, rni,_, can either be fixed or allowed to vary during the intake process. Intake

manifold volume, V_, does not change. For variable intake manifold properties, the first cycle of
the run is made with fixed properties to estimate air mass flow rate to the manifold. For subsequent

cycles, the air mass flow rate to the manifold is constant during the cycle and the rate of change

of intake manifold mass, rh_,_, is given by

= - rh .t (6)

where rhic is mass flow rate into the intake manifold (e.g., from an aftercooler) and rh_.t is mass

flow rate from the intake manifold to the combustion chamber. The derivative of intake manifold

temperature is

dt \ P_,_V_,_ ] \ /c_,i,,_/_- 1

where iic is the enthalpy of the incoming stream, i_., is the enthalpy in the intake manifold, _ is

the gas constant for air, (_,_ is heat transfer rate to manifold walls (taken as zero for the current

study) and %,_._ is specific heat at constant pressure in the intake manifold. Pressure rate of

change is

at \ _ } rn_,,_ + \ T,,,, ] - dt

Apex seal friction force is calculated following the approach given by Yamamoto (23), but taking
into consideration friction between the seal slot and the seal and also using pressures generated

by the MIT code. For any crank angle, 0, calling the pressure ahead of the apex seal P1 and that
behind the seal P2, the instantaneous apex seal friction force, F_/, is

)Fay- p° l,, +a. sin_ (Px-P2)+m. _ +ecos -
cos_o

m (dO 2
U- -\-_] sin(_)- laoPll.(h.-c.)-

ud°(P, - P2)(co - + cos + (9a)

when P1 > P2 or

r./_ la. 1. +a. sin_o (P2-Px)+m. -_ +ecos -
cos



IJ. ma \ dt /

- - ¢,,+ a,co  o)+ Fo.1 (gb)

for P2 > PI. In equations9a and 9b, /J_isthe apex seal'sslidingcoefficientof frictionon the

trochoidhousing,bo isthe apex sealwidth,ar isthe radiusof curvatureforthe apex sealcrown,

m_ isthe apex sealmass, r isthe rotorgeneratingradius,_ isthe engine eccentricity,ca isthe

clearancebetween the rotortipand the sealtip,l,isthe sealdepth (equalto the chamber depth),

F_ isthe springforceon the sealand _oisthe sealleanangle,given by

{ 3ec°s[_(O + 1800)] + r } (10)
= arccos _/9e' + r' + 6,r cos[](O+ 180°)]

Side seal friction force is assumed lumped at the seal center. It arises due to both gas pressure

loads and spring force. Side seal friction force, FoI, is given by

Fsf = I_.Fss J- (b. - fgshs)_slsPe (11)

where po is the coefficient of sliding friction for the side seal on the side housing, Fss is the side

seal spring force, bo is the side seal width, ho is the side seal height, lo is the side seal length and

Pc is the instantaneous chamber pressure. The crank case pressure, Pcc, is assumed constant, so
the oil seal friction force, Fo/is given by

For = 27rRobolaoPcc + I_oF, o (12)

In equation 12, Ro is the oil seal radius, bo is the oil seal width,/_o is the oil seal sliding coefficient

of friction and Foo is the oil seal spring force. At Michigan State University, modelling work for seal

friction is currently underway. This work is expected to result in more sophisticated seal models

for use in the MIT code (24).

Ancillary losses were lumped together and estimated in a manner similar to that of other inter-

mittent combustion engine thermodynamic programs. Heywood (25) recommends a relation of the
form

/ \N N 2
fmep = CF, + C.,tl--_) + CF,(_-O) (13)

for friction mean effective pressure (fmep) in a spark ignition engine. Here, CF1, CF2 and CF3 are

constants and N is engine speed in rpm. The first term is associated with boundary lubrication, the
second term with hydrodynamically lubricated surfaces in relative motion and the third with fluid

losses (air, water, fuel and oil pumping). Because the MIT code calculates the seal and bearing
friction loads separately, equation 13 was modified to

N 2

fmep. = Cal +Ca,(i--_) (14)

where fmep_, is the ancillary fmep and CA1 and CA2 are constants. The only available data for

use in calibrating equation 14 were unpublished data (26). Using these data, the constants in
equation 14 were set to CA1 = 0.45 and CA2 = 0.025.
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RESULTS

The MIT codewas run for a single rotor engine in the 75 kW class for engine speeds ranging

from 3500 to 8500 rpm and for fuel/air equivalence ratios between 0.35 and 0.85. The engine

was supercharged to an average boost pressure of 86.1 kPa (12.5 psig) and the exhaust manifold

pressure was set at 152 kPa (22 psia). Fuel used was isa-octane. The baseline engine had housings
made of aluminum and a rotor made of iron. Engine coolant was a 50/50 mixture of water and

ethylene glycol. There were two main bearings, two rotor bearings, three apex seals, six side seals
and two oil seals. Leakage area was estimated at 0.1 cm _ and crevice volumes at 0.57 cc. Discharge

coefficients were 0.6 and 0.65 for the intake and exhaust ports, respectively.

PERFORMANCE

A P-V diagram was generated for a baseline engine (Figure 5). Although chamber properties,

etc., are calculated at fractional crank angle steps, output was only generated for crank angle
increments of 10°. The shape of the plot is expected, but three points should be noted. First,

there is a small positive pumping loop (resulting in work added to the system), since the intake

pressure is greater than the exhaust and chamber pressures during the scavenging process. Second,

the peak chamber pressure location, 28 ° after TDC, and magnitude, 60.4 atm, are determined by

inputs to the combustion model, which was not adjusted to reflect burning rate changes with speed
and load. Finally, the peak chamber pressure is well above the critical pressure for n-octane, 24.8

atm (27). The thermodynamic cycle description is completed in Figure 6, which shows chamber

temperature and the combustion progress for one cycle. Combustion progress is defined as the
fraction of the total fuel for one cycle burnt by a given crank angle (0 means combustion has not

begun, 1 means combustion is complete). As expected, the temperature drop is more gradual than

the pressure drop during the expansion process.

The results of this study are summarized in Figure 7. The performance of a hypothetical DISC RCE

is mapped over a domain of engine speeds and loads. Lines of constant equivalence ratio are plotted
and contours of iso-bsfc are superimposed. Constant equivalence ratio lines flatten out with engine

speed because of volumetric efficiency decreases. The high bsfcs seen at low load arise because the

ancillary losses are such a large fraction of indicated power. The engine map shows a fairly large

region of operating conditions for which fuel consumption is below 290 g/kW-hr (0.48 lb/hp-hr).
Some cautions should be noted, however. First, this engine map was generated for only one boost

pressure; to fully map engine performance, a family of these maps should first be generated and
then "matched" to the characteristics of the turbocharger in use. Secondly, no attempt was made

to optimize engine performance or fuel consumption. Finally, the performance may be worse than

predicted at high speeds, because of injector and combustion changes. The engine map of Figure

7 was generated in approximately 1.5 hr CPU time on a VAX 11/780 mainframe computer.

HEAT TRANSFER

To investigate the ability of insulating coatings and materials to enhance engine performance and

exhaust gas energy, the MIT code was run for six sets of engine materials: the baseline engine

(aluminum housings and iron rotor), an all titanium engine, an engine with a ceramic coated
trochoid housing, an engine with a ceramic coated rotor, an engine with all surfaces ceramic

coated and a hypothetical, adiabatic engine. Because chamber pressure data were not available for

calibration of the combustion model for each of these engines, the same combustion model inputs

are used for all six engines. This may lead to inaccurate predictions should the wall temperatures

or properties become very different from those of the baseline engine. The exact make-up and

material properties of these engine components are detailed in Table 1. The coatings used were
chosen to be the same as those of Badgley et al. (9).



Table 1: Englne Materials for the Six Heat Transfer Test Cases

Case

1

2

3

4

Trochoid Housing

11.25mm Aluminum*

10.76mm Titanium***

10mm Al coated with

0.127mm of coating 1 t and

0.635mm of coating 2t

11.25mm Aluminum

10mm A1 coated with

0.127mm of coating 1 and

0.635mm of coating 2

Hypothetical Struc_
ture with near-zero

conductivity

Rotor Face

ll.25mm Iron**

10.63mm Titanium

ll.25mm Iron

10mm Iron coated with

0.635mm of coating 2

10mm Iron coated with

0.635mm of coating 2

Hypothetical Struc-
ture with near-zero

conductivity

Side Housing

11.25mm Aluminum

10.76mm Titanium

11.25mm Aluminum

11.25mm Aluminum

10mm A1 coated with

0.127mm of coating 1 and

0.635mm of coating 2

Hypothetical Struc-
ture with near-zero

conductivity

* For Aluminum, k=240 w/m-k

*" For Iron, k=547 w/m-k

*** For Titanium, k=19.4 w/m-k

t Coating 1 is Plasma Sprayed Cr2Os, k=l.21 w/m-k

t Coating 2 is Plasma Sprayed Zirconia, Post Densified with Cr203, k=2.91 w/m-k

In Figure 8, predicted trochoid housing inner surface temperatures are plotted for 30 housing
positions (see Figure 3 for the 30 positions). Because nucleate boiling was allowed on the coolant

side of the housing, coolant heat transfer coefficients became very high when the trochoid housing

temperature on the coolant side approached the liquid saturation temperature. The result is very

little swing in housing temperature for the aluminum housings. Predicted peak temperature for

the coated housing (T,_, = 672 K, [750°F]) was considerably below the prediction of Badgley et

al. (T_, = 991 K [1324°F]) for a liquid cooled engine of the same size category. In predicting

their wall temperatures, Badgley et al. used the version of the MIT DISC engine code from
MIT without the changes that were made subsequently at NASA. The MIT code was used to

generate boundary conditions for a multi-dimensional, finite element steady state heat conduction

analysis of the trochoid housing. Badgley's model is steady state, in that averaged chamber

temperatures and heat transfer coefficients are used on the hot side of the housing walls. Coolant
side heat transfer coefficient and temperature for the finite element analysis were chosen and fixed

(apparently the same values for all housing positions). Two possible explanations are offered for the

differences between predicted housing temperatures. First, coolant side heat transfer coefficient

was determined differently in the two studies. Also, the analysis used in the present study is

I-D, whereas that of Badgley et al. was 3-D (although the boundary conditions were not time

dependent). Neither calculation accounted for possible changes in the combustion process.



Alsofound on Figure 8 are predicted housing temperatures for an all-titanium engine and a hypo-

thetical adiabatic engine. The predicted housing temperatures for all the engines shown in Figure

8 are well below those of a truly adiabatic engine.

Figure 9 illustrates the redistribution of fuel energy from the coolant to work and exhaust when
the engine is insulated. In all cases but the adiabatic engine, only modest decreases in coolant load

are realized. In general, most of the fuel energy diverted from the coolant appears in the exhaust

stream, as demonstrated in the adiabatic engine case. Note that this analysis was performed at

only one engine speed, 5500 rpm. At lower engine speeds, since heat transfer is time (and not crank

angle) dependent, the fraction of the fuel energy lost to the coolant will be higher and the influence
of insulating materials more pronounced. The effect insulating materials have on mean exhaust

gas temperature, brake power and bsfc is shown in Table 2. Volumetric efficiency for the coated
and titanium engines was nearly the same as that of the baseline engine (93 %). The volumetric

efficiency of the hypothetical adiabatic engine was 91%.

Table 2: Influence of Engine Materials on Performance

% of Fuel Energy

Case to Cooling (%) T_xu (K)

Normalized Brake

Power (-) BSFC (g/kW-hr)

1 12.5 964.5 1.0 281

2 11.0 975.5 1.012 278

3 11.7 969.7 1.008 279

4 12.4 965.7 1.002 281

5 11.5 971.3 1.008 279

6 0 1064.6 1.06 260

In Figure 10, the breakdown of coolant heat transfer to the trochoid housing, the rotor face and

the sideplates is shown. Since the percentage of heat transfer through the rotor and sideplates

is small (in terms of fuel energy), it appears that insulating the trochoid housing would have a
greater impact on exhaust gas energy. Because the apex seals scrape the trochoid surface, though,
care must be taken in choosing a housing coating and applying it to the surface. Although weight

was not analyzed in this study, it is suggested an added benefit of an insulated aircraft engine is

its lower cooling system weight.

MANIFOLD PROPERTIES

Since MIT code results were last published, provisions for variable intake manifold pressure, tem-

perature and mass have been added. The formulation is described in this report's Model Formula-
tion and Calibration section. The instantaneous intake manifold pressures for an engine run with

an equivalence ratio of 0.75 and engine speeds ranging from 3500 to 8500 rpm are shown in Figure

11. Although a relatively large manifold volume was used (equal to the engine displacement vol-

ume), the intake manifold pressure variation during one intake event is large, --, 30% of the average

intake manifold pressure at 3500 rpm. The peak pressure decreases and shifts to later crank angles

as engine speed is increased. Since peak pressures are high and early in the intake process (before



the exhaustport closes), there is significant blow-through of fresh air through the exhaust port

at low speeds. In addition, since the pressure at the time the intake port closes is higher for low

speeds, the volumetric efficiency also is expected to be higher. Volumetric efficiency was calculated

based on average manifold pressure and temperature. No comparisons are made with empirical

data, since no data were available. In the future, if a need is shown, a more complex, geometry
dependent 1-D intake manifold model may be incorporated.

The MIT code was run for the same operating conditions and with both variable and fixed intake

manifold thermodynamic properties. Intake manifold volume was not changed for any runs. Figure

12 shows a significant difference between predicted air flow rate and trapping efficiency for the fixed

and variable property cases. Trapping efficiency is defined as the percentage of the air flowing

through the intake port that is trapped in the chamber when the intake port closes. Both the air

mass flow rate and the trapping efficiency are lower for the variable intake manifold thermodynamic
property model than for the fixed property model.

In Figure 13, volumetric efficiency and brake power are plotted for the variable and fixed intake

manifold property models. Because of the tuning effects described above, the volumetric efficiency

of the variable manifold pressure engine is higher at low speeds and lower at high speeds compared
to that of the fixed property engine. These volumetric efficiency differences also are reflected in
the output power curves.

LOSSES

Figure 14a shows the estimated ancillary fmep, frnep_,, for an engine run at ¢ -- 75. Recalling
equation 14, .frnep_, rises with the square of engine speed. Note that frnep,, has no load dependency.

The fmep_, includes contributions from the water pump, the oil pump, the fuel pump, the alternator

and the acceleration of oil in the rotor cavity.

In Figure 14b, seal friction losses for the same engine and a motored engine are plotted against

engine speed. The seal fmep is lower than fmepa. The relatively small influence of equivalence

ratio on friction is demonstrated in Figure 14b. Since crank case pressure is not varied, the oil

seal friction losses are the same for the motored and the fired engine. Because apex seal losses

are dominated by the centrifugal force exerted on the seal, not by gas pressure, apex seal losses

are predominantly influenced by engine speed. The side seals show a greater sensitivity to gas

pressure, because they have a greater base area (there are six side seals) and are subjected to the
chamber pressure.

Friction mean effective pressure is plotted against engine speed for three equivalence ratios in

Figure 15. frnep in Figure 15 includes seal friction, bearing friction and ancillary losses. A more

revealing comparison of the friction losses at different engine loads is made in Figure 16, where the

fraction of the indicated power used to overcome friction losses is plotted against engine speed for

3 equivalence ratios. At low loads, the friction consumes a greater fraction of the engine indicated

power. This results in the high bsfcs at low loads shown on the engine map (Figure 7).

CODE STATISTICS

Table 3 shows convergence data and CPU times for a number of runs. Normally the MIT code

requires between 3 and 12 engine cycles to converge for one set of engine operating conditions.
This equates to between 1 and 3 CPU minutes to run on a VAX 11/780 mainframe computer.
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Table 3: Computer Program Statistics

Case

¢=0.75,

3500 rpm

¢=0.75,

5500 rpm

¢:075,

7500 rpm

Motored,

7500 rpm

Motored,

7500 rpm,

Pi,_ -- constant

Cycles to CPU Time

Converge (APc)_,_t_a_ (ATc)_n,t_a_ (AP_m)_'*_t_a_ (rain)*

6 0.02% -0.42% 0.05% 1:42

5 0.05% -0.16% 0.71% 1:24

7 0.10% -0.08% 0.26% 1:54

6 0.04% -0.13% 0.86% 1:45

4 0.06% -0.06% 0.00% 1:03

* On a VAX 11/780 Mainframe Computer

CONCLUSIONS

A hypothetical,one rotorDISC RCE was analyzedwith a zero-dimensionalthermodynamic engine

cycle computer program. The program predicted a broad range of operating conditions over which

the engine could run at desired power for fuel consumption below 290 g/kW-hr (0.48 lb/hl>-hr).

Insulating the engine with a thin coating of ceramic material resulted in small reductions in the

coolant load and very small improvements in performance. It is possible the steady state approach
used to calculate heat transfer resulted in underprediction of the positive effects of insulation. In

addition, it was assumed changes in wall temperature and wall material properties did not have a

large influence on the combustion heat-release rate.

A new intake manifold model was demonstrated. There are significant differences in predicted air

mass flow rate and volumetric efficiency when the intake manifold properties are allowed to vary,

as opposed to using a fixed intake pressure and temperature. There is a significant variation in

pressure in the intake manifold during the intake process.

Engine losses were estimated using kinematic models for all seals and bearings, and using an ad
hoc model to estimate all other ancillary losses. In general, losses are more influenced by engine

speed than load. It would be desirable to incorporate separate models for the ancillary components

such as water pump, fuel pump, oil pump and alternator.

When engine pressure data become available for a DISC RCE for a number of loads and speeds,
a set of combustion model inputs for the MIT code will be calculated. The domain over which a
set of combustion rate model inputs is valid will be determined with these values. Until that time,

the MIT code can only be used to make qualitative studies on engine performance. Other model

constants that need to be calibrated include friction and heat transfer model inputs.
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The MIT codeis an inexpensivetool for analyzing DISC Wankel engines. It normally runs in less

than 3 min on a VAX 11/780 computer and produces information for a wide range of engine per-
formance indicators. It has been shown to be flexible enough to incorporate submodels for friction

and other engine processes and it appears compatible for use in a turbocharged/turbocomponded
engine system analysis.
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LIST OF SYMBOLS

Symbol

ar

b

CAI,CA2

CFI, CF2, CF3

Ca

Cp

Fol, Fol, F_S
F_,F,o,F_,

f mep

ha,h,

hhg

Description

apex seal crown radius

seal base width

ancillary loss constants

friction loss constants

apex seal clearance above the rotor

specific heat at constant pressure

apex , oil and side seal friction forces

apex, oil and side seal spring forces

friction mean effective pressure

apex seal and side seal height

average hot gas side heat transfer coefficient
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i

kj

Lj
l

m

rh

N

Nu

P

Pr

O i,,_

dO

Ro
Re

r

T

t

U

V

f.

0

T

Subscript

c

CC

cool

epc

epo
ic

im

ipc

ipo
max,

o

qmaz
s

sp
wall

1

2

enthalpy

thermal conductivityformaterialj

depth ofmaterialj

seallength

ma_8

mass flowrate

enginespeed (rpm)
Nusseltnumber

Pressure

Prandtl number

heat lossratethrough intakemanifold walls

rateofreleaseoffuelenergy

gas constantforair

oilsealradius

Reynolds number

trochoidgeneratingradius

temperature
time

overallheat transfercoefficient

volume

exponent in heat transferexpression

coefficientin heat transferexpression

exponent in heat transferexpression

eccentricity

crank angle

slidingcoefficientoffriction

apex sealleanangle

fuelheat releaseratedecay constant

Description

apex seal

combustion chamber

crank case

coolant

exhaust port closing

exhaust port opening

to the intakemanifold (from the intercooler)
intakemanifold

intakeport closing

intakeport opening
maximum

oil seal

at the time of maximum heat release rate
side seal

at the time the spark fires

at the trochoid housing wall
upstream
downstream
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bsfc
DISC
fmep
MIT
NASA
RCE

LIST OF ABBREVIATIONS

brake specific fuel consumption

direct-injection stratified-charge
friction mean effective pressure

Massachusetts Institute of Technology

National Aeronautics and Space Administration

rotary combustion engine

'_ e = o' (TDC)
Chamber of Interest 3 i

Port

Intake Port (BDC)

Figure 1: Rotary Engine Schematic
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Figure 2: DISC Engine Heat Release Rate
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